The Cremins lab investigates the epigenetic mechanisms regulating development and function of the mammalian central nervous system. We map and analyze neuronal epigenomes in three-dimensions using quantitative, genome-wide technologies. We also perturb epigenomes by employing state-of-the art genetic engineering strategies (e.g. CRISPR/Cas9, optoepigenetics). To test our hypotheses, we primarily use embryonic and induced pluripotent stem cell models of neuronal differentiation and disease. Our long-term goal is to discover how genome architecture controls genome function, applying this to study fundamental mechanisms controlling neuronal phenotype and, by extension, the onset and progression of neurodegenerative and neurodevelopmental disease states.

 

logos  

 

Our work is supported by the New York Stem Cell Foundation, the Alfred P. Sloan Foundation, the National Science Foundation, an NIH New Innovator Award through the National Institute of Mental Health and the NIH 4D Nucleome Common Fund Initiative.

 

 

Coming Soon!

Coming Soon!

Coming Soon!

Coming Soon!

 

 

Just like the digital codes of replicating life held within DNA, the brain’s fundamental secret will be laid open one day. But even when it has, the wonder will remain, that mere wet stuff can make this bright inward cinema of thought, of sight and sound and touch bound into a vivid illusion of an instantaneous present, with a self, another brightly wrought illusion, hovering like a ghost at its centre. Could it ever be explained, how matter became conscious? –Ian McEwan, Saturday (Jonathan Cape, 2005), pp. 254-255